Teoría de números - I

Problemas de Criptología - Hoja 6

Curso 07-08

- 1 **Sistemas de congruencias.** Resuelve las siguientes congruencias:
 - (a) $a \equiv 0 \mod 3, a \equiv 1 \mod 5, a \equiv 2 \mod 7$.
 - (b) $a \equiv 0 \mod 4, a \equiv 2 \mod 5, a \equiv 4 \mod 7.$
 - (c) $a \equiv 2 \mod 2, a \equiv 5 \mod 19, a \equiv 15 \mod 23$.
- **2** La ecuación $x^2 \equiv 1 \mod p$. Sea p un primo mayor que 3. Resuelve la ecuación $x^2 \equiv 1 \mod p$.
- **Resolución de una ecuación cuadrática.** Resuelve $x^2 \equiv 9 \mod 23$.
- 4 **Exponenciación modular.** Calcula las siguientes potencias usando el algoritmo de potencias cuadradas sucesivas.
 - (a) $38^{75} \mod 103$.
 - (b) $12^{1729} \mod 19$.
- 5 El teorema de Fermat. Comprueba con los siguientes números el teorema de Fermat: p = 29, a = 19 y p = 53, a = 27.
- **La ecuación** $a^p \equiv a \mod p$. Sea p un número primo. Prueba en 10 segundos que $a^p \equiv a \mod p$. Tiempo...;ya!
- 7 Últimos dígitos. ¿Cuáles son los tres últimos dígitos de 7^{803} ?
- 8 **Órdenes de elementos.** Determina el orden de 5 mod 1367 y de 13 mod 2547.
- 9 Cálculos de potencias. Calcula los siguientes valores:
 - (a) $23^{80} \mod 109$.
 - (b) $2^{1000000} \mod 77$.
- 10 La función de Euler. Calcula los siguientes valores de $\phi(n)$: $\phi(51)$, $\phi(3^9)$, $\phi(1.007)$, $\phi(10^9)$.
- 11 **Raíces primitivas.** Hallar las raíces primitivas de \mathbb{Z}_{11} y \mathbb{Z}_{13} .